Difluoride Dioxides of Molybdenum(vi) and Tungsten(vi)

By MALCOLM J. ATHERTON and JOHN H. HOLLOWAY (Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary ¹⁹F N.m.r. and i.r. spectroscopy, mass spectrometry, and chemical analysis show that MoO_2F_2 is the main product of reaction of MoO_2Cl_2 with anhydrous HF at elevated temperature and pressure or XeF₂ at low temperature, evidence for MoO₂ClF also being obtained in the MoO₂Cl₂-XeF₂ reactions; controlled hydrolysis of WOF₄ gives WO₂F₂, and reaction of the diffuoride dioxides with XeF₂ gives XeF₂·MoOF₄ and XeF₂·WOF₄. ALTHOUGH there is spectroscopic evidence for MoO_2F_2 the compound has not been prepared in bulk or properly characterized. In 1907 the analysis of a solid resulting from the reaction of MoO₂Cl₂ with anhydrous HF suggested that the product was MoO_2F_2 .¹ More recently it has been claimed as the product of hydrolysis of MoF_6 in HF at -5 °C² and the reaction of MoO₃ with IF₅.³ Evidence for the preparation of bulk $\mathrm{WO}_2\mathrm{F}_2$ is even more sparse, there being only one paper which claims synthesis by the hydrolysis of WF_6 in anhydrous HF^2 We now describe the preparation, isolation, and characterization of MoO₂F₂, together with some of its chemistry, and present good evidence for WO_2F_2 .

Stoicheiometric quantities of MoO₂Cl₂ and anhydrous HF were heated at 280-300 °C in a nickel reactor [equation (1)].

$$MoO_2Cl_2 + 2HF \longrightarrow MoO_2F_2 + 2HCl$$
 (1)

After 3-4 h volatile material was removed at 0 $^\circ C$ and a pale lilac solid was obtained. A similar product and the expected volume of xenon and chlorine was obtained when stoicheiometric quantities of MoO,Cl, and XeF, were warmed to $0 \,^{\circ}C$ in anhydrous HF (equation (2)].

$$MoO_2Cl_2 + XeF_2 \longrightarrow MoO_2F_2 + Xe + Cl_2$$
 (2)

The product does not melt or sublime at temperatures up to 310 °C in vacuo and is insoluble in MeCN, CHCl₃, ClF₂-·CCl₂F, and propylene carbonate. It is soluble in SO₂ClF and slightly soluble in HF. X-Ray powder photography showed that the material is not MoO₂, MoO₂, MoO₂Cl₂, or MoOF₄ and elemental analyses suggested the empirical formula MoO₂F₂.

The dominant species in the mass spectrum is $MoO_2F_2^+$ and the main fragmentation pathway is via MoO₂F⁺, MoOF⁺, and MoO⁺ to Mo⁺. The only species observed which were of greater mass than MoO₂F₂ were due to traces of MoO_2FCl^+ (m/e 178-188) and $Mo_2O_3F_4^+$ (m/e 309-320), the latter suggesting that $\mathrm{MoO}_2\mathrm{F}_2$ may be polymeric. This is further supported by the lack of solubility and volatility mentioned earlier.

The i.r. spectrum also evidences a possible polymeric formulation. Features at 993s and 1007w,sh cm⁻¹ are identical in shape with the band envelope for the symmetric and asymmetric stretching modes of the MoO₂ unit in gas-phase spectra of MoO_2X_2 (X = F, Cl, or Br)⁴ and the frequencies correlate well with data for solid CrO₂F₂,⁵ MoO_2Cl_2 , and MoO_2Br_2 .⁶ The broad absorption at 835s cm⁻¹ can be assigned to bridging Mo · · · OMo stretching vibrations by comparison with related bands in MoO_3^7 and MoO₂Cl₂.⁸ Terminal Mo-F stretching modes at 670s and 695w, sh cm⁻¹ and bridging Mo \cdots F stretches at 587s and 522w, sh cm⁻¹ are similar in frequency to bands in MoOF₄.

¹⁹F N.m.r. spectra of solutions of MoO₂F₂ in HF and SO₂ClF-HF mixtures show a broad singlet, width 130 Hz at half-height, at $-131{\cdot}5$ p.p.m. relative to $\text{CFCl}_3.$ These compare with signals at -146 and -140 p.p.m. for MoOF₄ and $MoOF_5^-$ respectively.

Stoicheiometric quantities of H₂O in anhydrous HF were distilled on to WOF_4 at -196 °C in pre-seasoned FEP tubes. In each case the reactor was warmed slowly by consecutively immersing it in each of a series of low temperature baths at -160, -139, -119, -98, -78, -63, -42, -23, and 0 °C for 30-45 min. Finally, the reactants were brought briefly to room temperature before recooling to -78 °C and slowly removing the HF under reduced pressure [equation (3)].

$$WOF_4 + H_2O \xrightarrow{HF} WO_2F_2 + 2HF$$
 (3)

Vibrational spectra of the unstable, off-white solid were poor but demonstrated the absence of WOF₄. The mass spectrum is similar to that of MoO₂F₂, the main fragmentation pathway being $WO_2F_2^+ \rightarrow WO_2F^+ \rightarrow WOF^+ \rightarrow WO^+$. The parent ion of WOF_4 is totally absent whilst WOF_3^+ is less abundant than both $WO_2F_2^+$ and WO_2F^+ .

Reaction of stoicheiometric quantities of solid MoO₂F₂ or WO₂F₂ with equimolar quantities of XeF₂ in anhydrous HF gave the tetrafluoride oxides. With excess of XeF, the XeF₂·MoOF₄ and XeF₂·WOF₄ adducts were formed.¹⁰

(Received, 19th December 1977; Com. 1287.)

¹ O. Ruff and F. Eisner, Ber., 1907, 40, 2926.

- ² N. S. Nikolaev, S. V. Vlasov, Y. A. Buslaev, and A. A. Opalovskii, *Izvest. Akad. Nauk S.S.S.R.*, 1960, 47. ³ I. R. Beattie, K. M. S. Livingston, D. J. Reynolds, and G. A. Ozin, *J. Chem. Soc.* (A), 1970, 1210.
- ⁴ B. G. Ward and F. E. Stafford, *Inorg. Chem.*, 1968, 7, 2569.
 ⁵ W. E. Hobbs, *J. Chem. Phys.*, 1958, 28, 1220.
- ⁶ C. G. Barraclough and J. Stals, Austral. J. Chem., 1966, 19, 741; T. V. Iorns and F. E. Stafford, J. Amer. Chem. Soc., 1966, 88, 4819. ⁷ C. G. Barraclough, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1959, 3352.
- ^a D. M. Adams and R. G. Churchill, J. Chem. Soc. (A), 1968, 2310.
 ^a L. E. Alexander, I. R. Beattie, A. Bukovszky, P. J. Jones, C. J. Marsden, and G. J. van Schalkwyk, J.C.S. Dalton, 1974, 81; R. T. Paine and R. S. McDowell, Inorg. Chem., 1974, 13, 2366.
- ¹⁰ J. H. Holloway, G. J. Schrobilgen, and P. Taylor, *J.C.S. Chem. Comm.*, 1975, 40; G. J. Schrobilgen and J. H. Holloway, in prepara-tion; P. A. Tucker, P. A. Taylor, J. H. Holloway, and D. R. Russell, *Acta Cryst.*, 1975, **B31**, 906.